Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Sci Rep ; 13(1): 4388, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2265740

ABSTRACT

In order to identify biomarkers for earlier prediction of COVID-19 outcome, we collected blood samples from patients with fatal outcomes (non-survivors) and with positive clinical outcomes (survivors) at ICU admission and after seven days. COVID-19 survivors and non-survivors showed significantly different transcript levels for 93 genes in whole blood already at ICU admission as revealed by RNA-Seq. These differences became even more pronounced at day 7, resulting in 290 differentially expressed genes. Many identified genes play a role in the differentiation of hematopoietic cells. For validation, we designed an RT-qPCR assay for C-type lectin domain family 12 member A (CLEC12A) and acetylcholinesterase (ACHE), two transcripts that showed highest potential to discriminate between survivors and non-survivors at both time points. Using our combined RT-qPCR assay we examined 33 samples to accurately predict patient survival with an AUROC curve of 0.931 (95% CI = 0.814-1.000) already at ICU admission. CLEC12A and ACHE showed improved prediction of patient outcomes compared to standard clinical biomarkers including CRP and PCT in combination (AUROC = 0.403, 95% CI = 0.108-0.697) or SOFA score (AUROC = 0.701 95% CI = 0.451-0.951) at day 0. Therefore, analyzing CLEC12A and ACHE gene expression from blood may provide a promising approach for early risk stratification of severely ill COVID-19 patients.


Subject(s)
Acetylcholinesterase , COVID-19 , Lectins, C-Type , Humans , Biomarkers , COVID-19/genetics , Critical Illness , Intensive Care Units , Lectins, C-Type/genetics , Organ Dysfunction Scores , Prognosis , Receptors, Mitogen , Retrospective Studies , Risk Assessment , ROC Curve
2.
Nano Lett ; 23(4): 1496-1504, 2023 02 22.
Article in English | MEDLINE | ID: covidwho-2235673

ABSTRACT

Despite intense scrutiny throughout the pandemic, development of efficacious drugs against SARS-CoV-2 spread remains hindered. Understanding the underlying mechanisms of viral infection is fundamental for developing novel treatments. While angiotensin converting enzyme 2 (ACE2) is accepted as the key entry receptor of the virus, other infection mechanisms exist. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and its counterpart DC-SIGN-related (DC-SIGNR, also known as L-SIGN) have been recognized as possessing functional roles in COVID-19 disease and binding to SARS-CoV-2 has been demonstrated previously with ensemble and qualitative techniques. Here we examine the thermodynamic and kinetic parameters of the ligand-receptor interaction between these C-type lectins and the SARS-CoV-2 S1 protein using force-distance curve-based AFM and biolayer interferometry. We evidence that the S1 receptor binding domain is likely involved in this bond formation. Further, we employed deglycosidases and examined a nonglycosylated S1 variant to confirm the significance of glycosylation in this interaction. We demonstrate that the high affinity interactions observed occur through a mechanism distinct from that of ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Lectins, C-Type/metabolism , Ligands , Protein Binding
3.
J Med Virol ; 95(1): e28427, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173205

ABSTRACT

The immune response is crucial for coronavirus disease 19 (COVID-19) progression, with the participation of proinflammatory cells and cytokines, inducing lung injury and loss of respiratory function. CLEC5A expression on monocytes can be triggered by viral and bacterial infections, leading to poor outcomes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to induce neutrophil activation by CLEC5A and Toll-like receptor 2, leading to an aggressive inflammatory cascade, but little is known about the molecular interactions between CLEC5A and SARS-CoV-2 proteins. Here, we aimed to explore how CLEC5A expression could be affected by SARS-CoV-2 infection using immunological tools with in vitro, in vivo, and in silico assays. The findings revealed that high levels of CLEC5A expression were found in monocytes from severe COVID-19 patients in comparison with mild COVID-19 and unexposed subjects, but not in vaccinated subjects who developed mild COVID-19. In hamsters, we detected CLEC5A gene expression during 3-15 days of Omicron strain viral challenge. Our results also showed that CLEC5A can interact with SARS-CoV-2, promoting inflammatory cytokine production, probably through an interaction with the receptor-binding domain in the N-acetylglucosamine binding site (NAG-601). The high expression of CLEC5A and high levels of proinflammatory cytokine production were reduced in vitro by a human CLEC5A monoclonal antibody. Finally, CLEC5A was triggered by spike glycoprotein, suggesting its involvement in COVID-19 progression; therapy with a monoclonal antibody could be a good strategy for COVID-19 treatment, but vaccines are still the best option to avoid hospitalization/deaths.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Cytokines , Antibodies, Monoclonal , Glycoproteins , Receptors, Cell Surface/genetics , Lectins, C-Type/genetics
4.
In Vivo ; 36(5): 2116-2125, 2022.
Article in English | MEDLINE | ID: covidwho-2030531

ABSTRACT

BACKGROUND/AIM: Rapid spread of COVID-19 resulted in the revision of the value of ultraviolet C (UVC) sterilization in working spaces. This study aimed at investigating the UVC sensitivity of eighteen malignant and nonmalignant cell lines, the protective activity of sodium ascorbate against UVC, and whether Dectin-2 is involved in UVC sensitivity. MATERIALS AND METHODS: Various cell lines were exposed to UVC for 3 min, and cell viability was determined using the MTT assay. Anti-UV activity was determined as the ratio of 50% cytotoxic concentration (determined with unirradiated cells) to 50% effective concentration (that restored half of the UV-induced loss of viability). Dectin-2 expression was quantified using flow cytometry. RESULTS: The use of culture medium rather than phosphate-buffered saline is recommended as irradiation solution, since several cells are easily detached during irradiation in phosphate-buffered saline. Oral squamous cell carcinoma cell lines showed the highest UV sensitivity, followed by neuroblastoma, glioblastoma, leukemia, melanoma, lung carcinoma cells, and normal oral and dermal fibroblasts. Human dermal fibroblasts were more resistant than melanoma cell lines; however, both expressed Dectin-2. Sodium ascorbate at micromolar concentrations eliminated the cytotoxicity of UVC in these cell lines. CONCLUSION: Normal cells are generally UVC-resistant compared to corresponding malignant cells, which have higher growth potential. Dectin-2 protein expression itself may not be determinant of UVC sensitivity.


Subject(s)
COVID-19 , Carcinoma, Squamous Cell , Melanoma , Mouth Neoplasms , Ascorbic Acid/pharmacology , Humans , Lectins, C-Type , Phosphates , Ultraviolet Rays
5.
Nat Commun ; 13(1): 4830, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2000885

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.


Subject(s)
COVID-19 , Genome-Wide Association Study , COVID-19/epidemiology , COVID-19/genetics , Humans , Japan/epidemiology , Lectins, C-Type/genetics , Membrane Glycoproteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Receptors, Immunologic/genetics
6.
Mar Drugs ; 20(7)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1979311

ABSTRACT

Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.


Subject(s)
Aquatic Organisms , Plant Lectins , Animals , Fishes , Galectins , Glycoproteins , Lectins, C-Type
7.
J Biomed Sci ; 29(1): 52, 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-1928188

ABSTRACT

BACKGROUND: Coronavirus-induced disease 19 (COVID-19) infects more than three hundred and sixty million patients worldwide, and people with severe symptoms frequently die of acute respiratory distress syndrome (ARDS). Recent studies indicated that excessive neutrophil extracellular traps (NETs) contributed to immunothrombosis, thereby leading to extensive intravascular coagulopathy and multiple organ dysfunction. Thus, understanding the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation would be helpful to reduce thrombosis and prevent ARDS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We incubated SARS-CoV-2 with neutrophils in the presence or absence of platelets to observe NET formation. We further isolated extracellular vesicles from COVID-19 patients' sera (COVID-19-EVs) to examine their ability to induce NET formation. RESULTS: We demonstrated that antagonistic mAbs against anti-CLEC5A mAb and anti-TLR2 mAb can inhibit COVID-19-EVs-induced NET formation, and generated clec5a-/-/tlr2-/- mice to confirm the critical roles of CLEC5A and TLR2 in SARS-CoV-2-induced lung inflammation in vivo. We found that virus-free extracellular COVID-19 EVs induced robust NET formation via Syk-coupled C-type lectin member 5A (CLEC5A) and TLR2. Blockade of CLEC5A inhibited COVID-19 EVs-induced NETosis, and simultaneous blockade of CLEC5A and TLR2 further suppressed SARS-CoV-2-induced NETosis in vitro. Moreover, thromboinflammation was attenuated dramatically in clec5a-/-/tlr2-/- mice. CONCLUSIONS: This study demonstrates that SARS-CoV-2-activated platelets produce EVs to enhance thromboinflammation via CLEC5A and TLR2, and highlight the importance of CLEC5A and TLR2 as therapeutic targets to reduce the risk of ARDS in COVID-19 patients.


Subject(s)
COVID-19 , Lectins, C-Type , Neutrophils , Pneumonia , Respiratory Distress Syndrome , SARS-CoV-2 , Thrombosis , Animals , Blood Platelets/immunology , Blood Platelets/pathology , Blood Platelets/virology , COVID-19/blood , COVID-19/immunology , Humans , Lectins, C-Type/immunology , Mice , Neutrophils/immunology , Neutrophils/pathology , Neutrophils/virology , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/virology , Receptors, Cell Surface , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2/immunology , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology , Toll-Like Receptor 2/immunology
8.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: covidwho-1902172

ABSTRACT

Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as ß-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher ß-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, ß-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.


Subject(s)
COVID-19 , beta-Glucans , COVID-19/complications , Humans , Inflammation , Lectins, C-Type/metabolism , NF-kappa B/metabolism , SARS-CoV-2 , Syk Kinase , Post-Acute COVID-19 Syndrome
9.
Chem Commun (Camb) ; 58(33): 5136-5139, 2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1774005

ABSTRACT

The C-type lectin receptors DC-SIGN and L-SIGN bind to glycans on the SARS-CoV-2 spike glycoprotein and promote trans-infection of ACE2-expressing cells. We tested C2 triazole-modified mono- and pseudo-di-mannosides as inhibitors of DC/L-SIGN binding to a model mannosylated protein (Man-BSA) and to SARS-CoV2 spike, finding that they inhibit the interaction of both lectins with the spike glycoprotein in a Surface Plasmon Resonance (SPR) assay and are more potent than mannose by up to 36-fold (DC-SIGN) and 10-fold (L-SIGN). The molecules described here are the first known glycomimetic ligands of L-SIGN.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Lectins, C-Type/metabolism , Ligands , Protein Binding , RNA, Viral/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
10.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1760648

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to Africa and the Arabian Peninsula, which causes diseases in humans and livestock. C-type lectin receptors (CLRs) represent a superfamily of pattern recognition receptors that were reported to interact with diverse viruses and contribute to antiviral immune responses but may also act as attachment factors or entry receptors in diverse species. Human DC-SIGN and L-SIGN are known to interact with RVFV and to facilitate viral host cell entry, but the roles of further host and vector CLRs are still unknown. In this study, we present a CLR-Fc fusion protein library to screen RVFV-CLR interaction in a cross-species approach and identified novel murine, ovine, and Aedes aegypti RVFV candidate receptors. Furthermore, cross-species CLR binding studies enabled observations of the differences and similarities in binding preferences of RVFV between mammalian CLR homologues, as well as more distant vector/host CLRs.


Subject(s)
Aedes , Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Lectins, C-Type/genetics , Mammals , Mice , Mosquito Vectors/genetics , Sheep
11.
J Virol ; 96(7): e0199521, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1745826

ABSTRACT

C-type lectin domain-containing proteins (CTLDcps) shape host responses to pathogens and infectious disease outcomes. Previously, we identified the murine CTLDcp Cd302 as restriction factor, limiting hepatitis C virus (HCV) infection of murine hepatocytes. In this study, we investigated in detail the human orthologue's ability to restrict HCV infection in human liver cells. CD302 overexpression in Huh-7.5 cells potently inhibited infection of diverse HCV chimeras representing seven genotypes. Transcriptional profiling revealed abundant CD302 mRNA expression in human hepatocytes, the natural cellular target of HCV. Knockdown of endogenously expressed CD302 modestly enhanced HCV infection of Huh-7.5 cells and primary human hepatocytes. Functional analysis of naturally occurring CD302 transcript variants and engineered CD302 mutants showed that the C-type lectin-like domain (CTLD) is essential for HCV restriction, whereas the cytoplasmic domain (CPD) is dispensable. Coding single nucleotide polymorphisms occurring in human populations and mapping to different domains of CD302 did not influence the capacity of CD302 to restrict HCV. Assessment of the anti-HCV phenotype at different life cycle stages indicated that CD302 preferentially targets the viral entry step. In contrast to the murine orthologue, overexpression of human CD302 did not modulate downstream expression of nuclear receptor-controlled genes. Ectopic CD302 expression restricted infection of liver tropic hepatitis E virus (HEV), while it did not affect infection rates of two respiratory viruses, including respiratory syncytial virus (RSV) and the alpha coronavirus HVCoV-229E. Together, these findings suggest that CD302 contributes to liver cell-intrinsic defense against HCV and might mediate broader antiviral defenses against additional hepatotropic viruses. IMPORTANCE The liver represents an immunoprivileged organ characterized by enhanced resistance to immune responses. However, the importance of liver cell-endogenous, noncytolytic innate immune responses in pathogen control is not well defined. Although the role of myeloid cell-expressed CTLDcps in host responses to viruses has been characterized in detail, we have little information about their potential functions in the liver and their relevance for immune responses in this organ. Human hepatocytes endogenously express the CTLDcp CD302. Here, we provide evidence that CD302 limits HCV infection of human liver cells, likely by inhibiting a viral cell entry step. We confirm that the dominant liver-expressed transcript variant, as well as naturally occurring coding variants of CD302, maintain the capacity to restrict HCV. We further show that the CTLD of the protein is critical for the anti-HCV activity and that overexpressed CD302 limits HEV infection. Thus, CD302 likely contributes to human liver-intrinsic antiviral defenses.


Subject(s)
Hepacivirus , Hepatitis C , Lectins, C-Type , Receptors, Cell Surface , Antiviral Agents/metabolism , Hepacivirus/physiology , Hepatitis C/immunology , Hepatocytes/immunology , Hepatocytes/virology , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Virus Replication
12.
Nature ; 607(7917): 97-103, 2022 07.
Article in English | MEDLINE | ID: covidwho-1730298

ABSTRACT

Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.


Subject(s)
COVID-19 , Critical Illness , Genome, Human , Host-Pathogen Interactions , Whole Genome Sequencing , ATP-Binding Cassette Transporters , COVID-19/genetics , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Cell Adhesion Molecules , Critical Care , Critical Illness/mortality , E-Selectin , Factor VIII , Fucosyltransferases , Genome, Human/genetics , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Humans , Interleukin-10 Receptor beta Subunit , Lectins, C-Type , Mucin-1 , Nerve Tissue Proteins , Phospholipid Transfer Proteins , Receptors, Cell Surface , Repressor Proteins , SARS-CoV-2/pathogenicity
13.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1676664

ABSTRACT

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens, Viral/immunology , Candida albicans/chemistry , Mannans/immunology , Aluminum Hydroxide/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity/immunology , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Epitopes/immunology , Immunity, Innate , Immunization , Inflammation/pathology , Interferons/metabolism , Lectins, C-Type/metabolism , Ligands , Lung/immunology , Lung/pathology , Lung/virology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Paranasal Sinuses/metabolism , Protein Subunits/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Solubility , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , Transcription Factor RelB/metabolism , Vero Cells , beta-Glucans/metabolism
14.
J Med Chem ; 64(19): 14332-14343, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1621195

ABSTRACT

In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.


Subject(s)
Calixarenes/chemistry , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/metabolism , Glycoproteins/antagonists & inhibitors , Hydroxamic Acids/chemistry , Lectins, C-Type/antagonists & inhibitors , Phenols/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Adhesion Molecules/metabolism , Cell Line , Cytomegalovirus/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Ebolavirus/physiology , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Jurkat Cells , Lectins, C-Type/metabolism , Models, Biological , Protein Binding , Receptors, Cell Surface/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism
15.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565706

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Subject(s)
Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
16.
Cells ; 10(12)2021 11 23.
Article in English | MEDLINE | ID: covidwho-1538383

ABSTRACT

Dendritic cells (DCs) are the most potent antigen-presenting cells, and their function is essential to configure adaptative immunity and avoid excessive inflammation. DCs are predicted to play a crucial role in the clinical evolution of the infection by the severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. DCs interaction with the SARS-CoV-2 Spike protein, which mediates cell receptor binding and subsequent fusion of the viral particle with host cell, is a key step to induce effective immunity against this virus and in the S protein-based vaccination protocols. Here we evaluated human DCs in response to SARS-CoV-2 S protein, or to a fragment encompassing the receptor binding domain (RBD) challenge. Both proteins increased the expression of maturation markers, including MHC molecules and costimulatory receptors. DCs interaction with the SARS-CoV-2 S protein promotes activation of key signaling molecules involved in inflammation, including MAPK, AKT, STAT1, and NFκB, which correlates with the expression and secretion of distinctive proinflammatory cytokines. Differences in the expression of ACE2 along the differentiation of human monocytes to mature DCs and inter-donor were found. Our results show that SARS-CoV-2 S protein promotes inflammatory response and provides molecular links between individual variations and the degree of response against this virus.


Subject(s)
Dendritic Cells/pathology , Dendritic Cells/virology , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cytokines/biosynthesis , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation/pathology , Lectins, C-Type/metabolism , Protein Domains , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cell Surface/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Tissue Donors
17.
Front Immunol ; 12: 732298, 2021.
Article in English | MEDLINE | ID: covidwho-1506693

ABSTRACT

Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.


Subject(s)
Antigens, CD/metabolism , Antigens/administration & dosage , Green Fluorescent Proteins/administration & dosage , Langerhans Cells/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Animals , Antigens/immunology , Antigens/metabolism , COS Cells , Chlorocebus aethiops , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Injections, Intradermal , Langerhans Cells/immunology , Ligands , Miniaturization , Nanomedicine , Needles , Protein Binding , Protein Transport , Proteolysis , THP-1 Cells , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/metabolism
18.
J Cell Physiol ; 237(2): 1521-1531, 2022 02.
Article in English | MEDLINE | ID: covidwho-1490820

ABSTRACT

Mechanical forces can modulate the immune response, mostly described as promoting the activation of immune cells, but the role and mechanism of pathological levels of mechanical stress in lymphocyte activation have not been focused on before. By an ex vivo experimental approach, we observed that mechanical stressing of murine spleen lymphocytes with 50 mmHg for 3 h induced the nuclear localization of NFAT1, increased C-Jun, and increased the expression of early activation marker CD69 in resting CD8+ cells. Interestingly, 50 mmHg mechanical stressing induced the nuclear localization of NFAT1; but conversely decreased C-Jun and inhibited the expression of CD69 in lymphocytes under lipopolysaccharide or phorbol 12-myristate 13-acetate/ionomycin stimulation. Additionally, we observed similar changes trends when comparing RNA-seq data of hypertensive and normotensive COVID-19 patients. Our results indicate a biphasic effect of mechanical stress on lymphocyte activation, which provides insight into the variety of immune responses in pathologies involving elevated mechanical stress.


Subject(s)
Lymphocyte Activation/immunology , Stress, Mechanical , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Comorbidity , Gene Expression Regulation/drug effects , Humans , Hypertension/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ion Channels/metabolism , Lectins, C-Type/metabolism , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Male , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Protein Transport/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology
19.
Biomolecules ; 11(11)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488476

ABSTRACT

Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 Spike glycoprotein has been reported in various articles and is regarded to be a factor in systemic infection and cytokine storm. The mechanism of DC-SIGN recognition offers an alternative method for discovering new medication for COVID-19 treatment. Here, we discovered three potential pockets that hold different glycan epitopes by performing molecular dynamics simulations of previously reported oligosaccharides. The "EPN" motif, "NDD" motif, and Glu354 form the most critical pocket, which is known as the Core site. We proposed that the type of glycan epitopes, rather than the precise amino acid sequence, determines the recognition. Furthermore, we deduced that oligosaccharides could occupy an additional site, which adds to their higher affinity than monosaccharides. Based on our findings and previously described glycoforms on the SARS-CoV-2 Spike, we predicted the potential glycan epitopes for DC-SIGN. It suggested that glycan epitopes could be recognized at multiple sites, not just Asn234, Asn149 and Asn343. Subsequently, we found that Saikosaponin A and Liquiritin, two plant glycosides, were promising DC-SIGN antagonists in silico.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Epitopes/chemistry , Glycosides/chemistry , Lectins, C-Type/antagonists & inhibitors , Polysaccharides/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Amino Acid Motifs , Binding Sites , COVID-19/metabolism , Computer Simulation , Cytokines/metabolism , Flavanones/chemistry , Glucosides/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Saponins/chemistry , Spike Glycoprotein, Coronavirus/chemistry
20.
J Am Chem Soc ; 143(42): 17465-17478, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1469951

ABSTRACT

The C-type lectin receptor DC-SIGN is a pattern recognition receptor expressed on macrophages and dendritic cells. It has been identified as a promiscuous entry receptor for many pathogens, including epidemic and pandemic viruses such as SARS-CoV-2, Ebola virus, and HIV-1. In the context of the recent SARS-CoV-2 pandemic, DC-SIGN-mediated virus dissemination and stimulation of innate immune responses has been implicated as a potential factor in the development of severe COVID-19. Inhibition of virus binding to DC-SIGN, thus, represents an attractive host-directed strategy to attenuate overshooting innate immune responses and prevent the progression of the disease. In this study, we report on the discovery of a new class of potent glycomimetic DC-SIGN antagonists from a focused library of triazole-based mannose analogues. Structure-based optimization of an initial screening hit yielded a glycomimetic ligand with a more than 100-fold improved binding affinity compared to methyl α-d-mannopyranoside. Analysis of binding thermodynamics revealed an enthalpy-driven improvement of binding affinity that was enabled by hydrophobic interactions with a loop region adjacent to the binding site and displacement of a conserved water molecule. The identified ligand was employed for the synthesis of multivalent glycopolymers that were able to inhibit SARS-CoV-2 spike glycoprotein binding to DC-SIGN-expressing cells, as well as DC-SIGN-mediated trans-infection of ACE2+ cells by SARS-CoV-2 spike protein-expressing viruses, in nanomolar concentrations. The identified glycomimetic ligands reported here open promising perspectives for the development of highly potent and fully selective DC-SIGN-targeted therapeutics for a broad spectrum of viral infections.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cell Adhesion Molecules/metabolism , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , COVID-19/metabolism , COVID-19/virology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL